menu

79 results
Sort by: Relevance
Quest

Data Engineering

This advanced-level quest is unique amongst the other Qwiklabs offerings. The labs have been curated to give IT professionals hands-on practice with topics and services that appear in the Google Cloud Certified Professional Data Engineer Certification. From Big Query, to Dataproc, to Tensorflow, this quest is composed of specific labs that will put your GCP data engineering knowledge to the test. Be aware that while practice with these labs will increase your skills and abilities, you will need other preparation too. The exam is quite challenging and external studying, experience, and/or background in cloud data engineering is recommended.

Quest

Scientific Data Processing

Big data, machine learning, and scientific data? It sounds like the perfect match. In this advanced-level quest, you will get hands-on practice with GCP services like Big Query, Dataproc, and Tensorflow by applying them to use cases that employ real-life, scientific data sets. By getting experience with tasks like earthquake data analysis and satellite image aggregation, Scientific Data Processing will expand your skill set in big data and machine learning so you can start tackling your own problems across a spectrum of scientific disciplines.

Quest

Big Data on AWS

Scientists, developers, and other technologists from many different industries are taking advantage of AWS to perform big data analytics and meet the challenges of the increasing volume, variety, and velocity of digital information. AWS offers a portfolio of cloud computing services to help you manage big data by reducing costs, scaling to meet demand, and increasing the speed of innovation. In this quest, you’ll learn to work with advanced services for Big Data.

English 简体中文
Quest

Baseline: Data, ML, AI

Big data, machine learning, and artificial intelligence are today’s hot computing topics, but these fields are quite specialized and introductory material is hard to come by. Fortunately, GCP provides user-friendly services in these areas and Qwiklabs has you covered with this introductory-level quest, so you can take your first steps with tools like Big Query, Cloud Speech API, and Cloud ML Engine. Want extra help? 1-minute videos walk you through key concepts for each lab.

Quest

Data Science on the Google Cloud Platform

This Quest of hands-on labs is derived from the exercises from the book Data Science on Google Cloud Platform by Valliappa Lakshmanan, published by O'Reilly Media, Inc. Students are given the opportunity to practice all aspects of ingestion, preparation, processing, querying, exploring and visualizing data sets using Google Cloud Platform tools and services.

Quest

Google Cloud Solutions II: Data and Machine Learning

In this advanced-level quest, you will learn how to harness serious GCP computing power to run big data and machine learning jobs. The hands-on labs will give you use cases, and you will be tasked with implementing big data and machine learning practices utilized by Google’s very own Solutions Architecture team. From running Big Query analytics on tens of thousands of basketball games, to training TensorFlow image classifiers, you will quickly see why GCP is the go-to platform for running big data and machine learning jobs.

Quest

Developing Data and Machine Learning Apps with C#

C# has powered Windows .NET application development for nearly two decades and Google Cloud is committed to supporting developers getting their .NET workloads up and running on the GCP platform. In this quest, you will learn how to run C# apps in GCP, and specifically how to take your apps to the next level by interfacing them with the big data and machine learning APIs that are accessible now from C#. By enrolling in Developing Data and Machine Learning Apps with C# you will see firsthand how seamlessly GCP integrates with .NET workloads and what the possibilities are for leveraging big data and ML services in your own C# projects.

Quest

Advanced Operations Using Amazon Redshift

In this Quest, you will delve deeper into the uses and capabilities of Amazon Redshift. You will use a remote SQL client to create and configure tables, and gain practice loading large data sets into Redshift. You will explore the effects of schema variations and compression. You will explore visualization of Redshift data, and connect Redshift with Amazon Machine Learning to create a predictive data model.

Quest

Serverless Web Apps using Amazon DynamoDB

Serverless architectures allow you to build and run applications and services without needing to provision, manage, and scale infrastructure. This quest will show how to design, build, and deploy interactive serverless web applications, using a simple HTML/JavaScript web interface which uses Amazon API Gateway calls to send requests to AWS Lambda backends that query Amazon DynamoDB data.

Quest

Baseline: Deploy & Develop

In this introductory-level quest, you will learn the fundamentals of developing and deploying applications on the Google Cloud Platform. You will get hands-on experience with the Google App Engine framework by launching applications written in languages like Python, Ruby, and Java (just to name a few). You will see first-hand how straightforward and powerful GCP application frameworks are, and how easily they integrate with GCP database, data-loss prevention, and security services.

Filter

Cloud Environment
expand_more
Duration
expand_more
Modality
expand_more
Language
expand_more
home
Home
school
Catalog
menu
More
More